Contributions of supercoiling to Tn3 resolvase and phage Mu Gin site-specific recombination.

نویسندگان

  • K R Benjamin
  • A P Abola
  • R Kanaar
  • N R Cozzarelli
چکیده

Members of the resolvase/invertase family of site-specific recombinases require supercoiled substrates containing two recombination sites. To dissect the roles of supercoiling in recombination by the Tn3 and gamma delta resolvases and the phage Mu Gin invertase, we used substrates that provided some but not all of the topological features of the standard substrate. We divided the Tn3 resolvase reaction into two stages, synapsis and postsynapsis. Using structural and functional topological analyses, we verified that the resolvase synaptic complexes with nicked catenanes were recombination intermediates. The requirement for supercoiling was even less stringent for the gamma delta resolvase, which recombined nicked catenanes about half as well as it did supercoiled substrates. Gin recombination of catenanes occurred even if the recombinational enhancer was on a nicked ring, as long as both crossover sites were on a supercoiled ring. Therefore, supercoiling is required at the Gin crossover sites but not at the enhancer. We conclude that solely conformational effects of supercoiling are required for resolvase synapsis and the function of the Gin enhancer, but that a torsional effect, probably double helix unwinding, is needed for Tn3 resolvase postsynapsis and at the Gin recombination sites.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synapsis by Tn3 resolvase: speed and dependence on DNA supercoiling.

The transposon Tn3 encodes a protein known as resolvase. During transposition, resolvase catalyses a site-specific recombination between two directly repeated copies of the transposon DNA [I]. Resolvase acts by binding to 120 bp sites on the DNA, known as res sites, each of which contains three sub-sites called I, I1 and 111 [2]. During recombination, three resolvase dimers bind co-operatively ...

متن کامل

Structure-guided reprogramming of serine recombinase DNA sequence specificity.

Routine manipulation of cellular genomes is contingent upon the development of proteins and enzymes with programmable DNA sequence specificity. Here we describe the structure-guided reprogramming of the DNA sequence specificity of the invertase Gin from bacteriophage Mu and Tn3 resolvase from Escherichia coli. Structure-guided and comparative sequence analyses were used to predict a network of ...

متن کامل

Catalysis of site-specific recombination by Tn3 resolvase.

The active-site interactions involved in the catalysis of DNA site-specific recombination by the serine recombinases are still incompletely understood. Recent crystal structures of synaptic gammadelta resolvase-DNA intermediates and biochemical analysis of Tn3 resolvase mutants have provided new insights into the structure of the resolvase active site, and how interactions of the catalytic resi...

متن کامل

Topoisomerase IV, not gyrase, decatenates products of site-specific recombination in Escherichia coli.

DNA replication and recombination generate intertwined DNA intermediates that must be decatenated for chromosome segregation to occur. We showed recently that topoisomerase IV (topo IV) is the only important decatenase of DNA replication intermediates in bacteria. Earlier results, however, indicated that DNA gyrase has the primary role in unlinking the catenated products of site-specific recomb...

متن کامل

Recombination site selection by Tn3 resolvase: topological tests of a tracking mechanism.

In vitro recombination by Tn3 resolvase of plasmids containing two directly repeated recombination (res) sites generates two singly interlinked catenated rings. This simple product catenane structure was maintained over a wide range of substrate supercoil densities and in a reaction mixture in which phage lambda Int-mediated recombination generated its characteristic multiply interlinked forms....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of molecular biology

دوره 256 1  شماره 

صفحات  -

تاریخ انتشار 1996